Water Pricing for a Dry Future Summary and synthesis of experiences from Abroad

Ariel Dinar and David Zilberman

Source: World Resources 2000-2001, People and Ecosystems: The Fraying Web of Life, World Resources Institute (WRI), Washington DC, 2000.

Water availability over time

Sources:

- (1) Available water resources in countries except California: CIA Sourcebook 2015.
- (2) https://www.cia.gov/library/publications/the-world-factbook/fields/2201.html
- (3) Population in all countries except California: United States Census Bureau
- https://www.census.gov/population/international/data/idb/worldpopgraph.php
- (3) Long term water resources availability in California: Hanak, E., J. Lund, A. Dinar, B. Gray, R. Howitt, J. Mount,
- P. Moyle, B. Thompson, Managing California's Water: From Conflict to Reconciliation. San Francisco: PPIC, 2011.
- (4) Population in California: California Department of Finance, Report P-1: Summary Population Projections by Race/Ethnicity and by Major Age Groups.

Water Availability over time (Logarithmic scale)

Source: Authors elaboration based on data in previous slide

Ag Water use (%)

Country/State	Ag Water use of available water withdrawal (%)
Australia	66
Canada	12
Chile	83
China	66
France	9
Israel	52
Italy	24
South Africa	60
Spain	63
California	80

Source: For California: <u>http://www.ppic.org/main/publication_show.asp?i=1108</u> For rest: FAO AQUASTAT

Australia

- Federalism
 - Great variation over territories in population, precipitation and evaporation
- Millennium Australian Drought (2001-2009)
- Common national water pricing framework (2010 National Water Initiative-NWI)
 - Prices based on volumetric use
 - Water rights separated from land rights
 - Trade in rights was encouraged
 - Prices of water entitlements
 - Prices faced by end-users
 - Delivery services, infrastructure access (irrigators, environmental reserves, bulk urban water suppliers)
 - For residential and other urban users prices include access to the resource itself

Australia: Examples of 2012/13 tariff

Territory	Tariff Structure	Fixed charge (\$AU)	Block charge (\$AU/cubic meter)
Australia Capital Territory	2-part with 2 inclining blocks	100	2.43 4.86
New South Wales	2-part	19-167	434.92-606.70
Northern Territory	2-part	263	1.73
Quinsland	2-part	201	3.27
	Fixed charge	681	-
	2-part with two inclining blocks	590	2.10-3.30
Victoria	2-part with 3 inclining blocks	82-215	1.75 2.13 3.44 1.38 1.84 3.67

1\$AU=1-0.9 \$US in 2012/13 Source: Table 2.1 Crase et al. (2015)

Canada

- Federalism
- Well water-endowed
 - Deteriorating infrastructure of water and wastewater
- Excessive use of water
 - Inadequate water conservation practices
 - Low prices
- New initiatives
 - British Columbia
 - Water Sustainability Act: regulating SW and GW withdrawals
 - Intention to raise water use fees
 - Other provinces
 - Moving towards higher fees for self-supplied water users
 - Full cost accounting
 - Developing pricing structures for collection and treatment of storm runoff water

Canada

Province	% Pop metered	% Pop flat rate	Aver Marginal Price \$CA/m ³ (2006)
Quebec	16.5	88.5	0.91
Ontario	91.2	88.4	1.95
Manitoba	97.2	87.8	3.07
Saskatchewan	98.2	94.4	1.75
Alberta	84.8	90.7	1.78
British Columbia	32.6	83.4	1.28

1.00 CA \$ = 0.88 US \$ in 2006

Source: Table 4.1 in Renzetti and Dupont (2015)

China

- Types of fees included in water pricing frameworks at present:
 - Resource fees; Supply fees; Urban supply fees; Wastewater collection and treatment; Pollution discharge
- Time line:
 - 1949-1965 Era of no change
 - 1965- lower service charges (ability to pay)
 - 1980s Resource fees introduction
 - Late 1990s Wastewater collection and treatment fees
 - 2000s- Comprehensive water pricing systems
- Each province issues the parameters of the pricing scheme
 - Resource fee used to be levied by sector. Since 2014 it is similar for all sectors.
 - Urban schemes include 2-3 blocks. Agricultural schemes allow to exceed quota for a fine.

France

- Abundant and unequal distribution of water over time and space
- EU Water Framework Directive
 - Full cost recovery
 - Full cost = Full use cost + Environmental Externalities
 - Full use cost (Economic Cost) = Economic Externalities + Opportunity cost
 + full supply cost
 - Full supply cost = Capital Charges + O&M costs
 - Water pricing is managed by water districts

Structure	2003 (% of districts)	2013 (% of districts)
Declining tariffs	36	4
Increasing rates	1	29
Flat rates	3	1

Source: Table 8.3 in Montginoul et al. (2015)

France

- Emergence of social issues
 - Reducing the water bill for targeted population
 - Rebates on Water Bills
 - Challenges with increasing block tariffs for apartment buildings
 - Supporting income of targeted populations while charging fully for water
 - Reducing bills for all and introducing taxation
 - High connection level, but little knowledge about tap water is used

Israel

 Pricing system accounts for various types of water (fresh, treated, desalinated) for various uses (irrigation, household, industrial, environmental)

Pricing system moved From a subsidized to a Financially balanced closed system

Focus on demand Management and supply augmentation

Source: Fig 10.6 in Becker (2015)

Domestic Water Consumption

Source: Presentation by Tsur (2016)

Italy Full cost recovery

Financial sustainability MTI→MTT

South Africa

- Water-scarce country, spatial variability of precip and a high level of income inequality, based largely on race
- Challenges such as how to deal with irrigation subsidies, how to address issues of equity, the possible adoption of a national charge for water, and how best to structure infrastructure-related charges
- Raw water pricing
 - Social Equity; Financial Sustainability; Economic Efficiency; Ecological Sustainability
- Afforestation water pricing
- Still need to addressing subsidies, water quality, infrastructure funding, and equity Issues
- Remaining issues
 - National vs. Hybrid Model; Introduction of Targeted Subsidies; Ecological Infrastructure; Infrastructure Construction charges; Multi-year charges

Spain

Source: Figure 16.1 in Calatrava et al. (2015)

Spain

- Basin Water Authority is the regulating unit
- Four fees and tariffs paid by water users to river basin authorities, depending on the water services that they receive
 - 1. Users of the public hydraulic project are charged a levy to protect and improve project's conditions
 - 2. Urban and industrial users pay an "Effluent control levy"
 - 3. Users of surface water resources pay a "regulation levy"
 - Users of specific infrastructures, such as large canals, water transfers that are not regulation works, pay a "water use tariff" aims to cover investment, operation, and maintenance costs of such infrastructure.

California:

Revising Water Pricing Schemes

- AWWA Survey of 217 water utilities in California (out of 400) between 2005 and 2013
 - Water Pricing schemes: (1) "Other"; (2) Uniform; (3) Declining;
 (4) Inclining; (5) Budget
 - Years of adoption: 1992-2013
 - Water availability per consumer (CCF): 5-235 (CCF=hundreds cubic feet; One CCF is equal to 748 gallons)

9

Source: Based on data in Dinar and Ortiz-Correa (2016)

California

- Allocation Based Rate (Budget Pricing) ABR
 - Progressive in water use efficiency
 - Improves overall welfare compared to baseline
 - Each income group is better-off under ABR than it would be under a fiscally neutral uniform price or quantity instrument
 - Welfare under quantity restriction is slightly higher than under uniform price increase

California

- Started as a water right system- water conveyance project
 - First come first save -use it or lose it no trading
- No Regulation of ground water
- Slow changes triggered by droughts
- Water bank of 1991 allowed trading 250000af benefit 500-1000/AF
- CVPIA
 - Recognize environmental use as water beneficial use
 - Electronic water market
- Tiered pricing disallowed
- Low share of desalinization and recycling
- Innovative information intensive pricing-efficiency based pricing

Questions

- Importance of efficiency vs.
 - Financial sustainability
 - Equity in water pricing design
- What are the necessary conditions condition to introduce trading and water market?
- What factor should determine the features of water market?
- How to deal with water quality? Variability?
- How will new technologies affect water marketing and trading?